Hướng dẫn FAQ Hỗ trợ: 0973 686 401
Nền tảng học Online#1 cho HS Tiểu Học

GIỚI THIỆU BÀI HỌC

Hôm nay chúng ta tìm hiểu về dạng 3 của bài toán Công suất, đó là Thay đổi một trong các đại lượng để Pmax , đây cũng là một trong những dạng bài quan trọng của chương Điện xoay chiều. Sau khi học xong bài này các em sẽ thấy có nhiều vấn đề liên quan đến cộng hưởng điện.

NỘI DUNG BÀI HỌC

* Thay đổi L, C, \(\omega\) để Pmax

Ta có: \(P = RI^2 = R. \frac{U^2}{R^2 + (Z_L - Z_C)^2}\)
Khi L, C, \(\omega\) thay đổi ⇒ \((Z_L - Z_C)^2\) thay đổi
\(\Rightarrow P_{max} \Leftrightarrow Z_L - Z_C = 0 \Leftrightarrow Z_L = Z_C\): Xảy ra cộng hưởng điện
Lúc này: \(\left\{\begin{matrix} P_{max} = UI_{max} = RI_{max}^{2} = \frac{U^2}{R}\\ (\cos \varphi )_{max} = 1 \hspace{2,6cm} \end{matrix}\right.\)

* Thay đổi R để Pmax
Ta có: \(P = R.\frac{U^2}{R^2 + (Z_L - Z_C)^2} = \frac{U^2}{\frac{R^2 + (Z_L - Z_C)^2}{R}}\)
\(\Leftrightarrow P = \frac{U^2}{R + \frac{(Z_L - Z_C)^2}{R}}\)
Do U không đổi \(\Rightarrow P_{max} \Leftrightarrow \left [ R + \frac{(Z_L - Z_C)^2}{R} \right ]_{min}\)
Mà: \(R + \frac{(Z_L - Z_C)^2}{R} \geq 2|Z_L - Z_C|\)
Dấu "=" xảy ra khi \(R = \frac{(Z_L - Z_C)^2}{R} \Rightarrow R = |Z_L - Z_C|\)
Vậy thay đổi R để Pmax thì:
\(\left\{\begin{matrix} R = |Z_L - Z_C| \hspace{3,8cm} \\ P_{max} = \frac{U^2}{2R} = \frac{U^2}{R}\cos ^2 \varphi \Rightarrow \cos ^2 \varphi = \frac{1}{2}\\ \cos \varphi = \frac{1}{\sqrt{2}} = 0,707 \hspace{3cm} \end{matrix}\right.\)

* Cuộn dây có điện trở r

\(\\ \cdot \ Z_d = \sqrt{r^2 + Z_{L}^{2}} \Rightarrow U_d= \sqrt{U_{r}^{2} + U_{L}^{2}} \\ \cdot \tan \varphi _d = \frac{Z_L}{r}'\ \cos \varphi _d = \frac{r}{Z_d} = \frac{r}{\sqrt{r^2 + Z_{L}^{2}}} \\ \cdot P_{cd} = rI^2 = r\frac{U^2}{(R + r)^2 + (Z_L - Z_C)^2}\)

* Thay đổi R để (Pmạch)max

Ta có \(P_{mach} = R_b.\frac{U^2}{R_{b}^{2} + (Z_L - Z_C)^2},\ R_b = R + r\)

⇒​ (Pmạch)max khi \(\left\{\begin{matrix} R_b= |Z_L - Z_C| \ \ \\ (P_{mach})_{max} = \frac{U^2}{2R_b} \end{matrix}\right.\)
Nếu \(r \geq |Z_L - Z_C| \Rightarrow R_b = r\) (Lúc này R = 0)

* Thay đổi R để (PR)max
Ta có: \(P_R = R.I^2 = R.\frac{U^2}{(R+r)^2 + (Z_L - Z_C)^2} = \frac{U^2}{R + \frac{r^2 + (Z_L - Z_C)^2}{R}+2r}\)
Do U không đổi \(\Rightarrow (P_R)_{max} \Leftrightarrow \left [ R + \frac{r^2 + (Z_L - Z_C)^2}{R} \right ]_{min}\)
Mà: \(R + \frac{r^2 + (Z_L - Z_C)^2}{R}\geq 2.\sqrt{r^2 + (Z_L - Z_C)^2}\)
Dấu "=" xảy ra khi: \(R = \sqrt{r^2 + (Z_L - Z_C)^2}\)
Lúc này: \((P_R)_{max} = \frac{U^2}{2(R+r)}\)

VD1: Đặt một điện áp xoay chiều có giá trị hiệu dụng không đổi và tần số góc thay đổi được vào hai đầu mạch RLC ghép nối tiếp khi f = f1 thì Pmax = 200 W. Khi f = f2 thì điện áp hai đầu đoạn mạch lệch pha nhau \(\frac{\pi }{6}\) so với điện áp hai đầu tụ C. Tìm P lúc này?
Giải:
\(f = f_1 \Rightarrow P_{max} = 200 = \frac{U^2}{R}\) (CHĐ)
f = f2 ⇒ u lệch pha \(\frac{\pi }{6}\) so với uC

\(\Rightarrow P = P_{max}.\cos ^2 \varphi\)
Vậy: \(P = 200.\cos ^2 \left ( -\frac{\pi }{3} \right ) = 50\ V\)

VD2: Đặ điện áp \(u = 200\sqrt{2}\cos (100 \pi t - \frac{\pi }{4})\) (V) vào hai đầu đoạn mạch RLC ghép nối tiếp gồm \(R = 60 \ \Omega,\ L = \frac{6}{5 \pi } \ H,\ C = \frac{10^{-4}}{2 \pi }F\) thì công suất tiêu thụ của mạch là P1. Thay R bằng R' thì công suất tiêu thụ mạch cực đại và bằng P2. Tìm \(\frac{P_2}{P_1}\)?
Giải:
\(Z_L = L\omega = 120\ \Omega ; \ Z_C = \frac{1}{C\omega } = 200 \ \Omega\)
Ta có: \(P_1 = R.\frac{U^2}{R^2 + (Z_L - Z_C)^2} = 60.\frac{200^2}{60^2 + (120 - 200)^2} = 240\ (W)\)
Thay R = R' thì \(P_{max} = \left\{\begin{matrix} R' = |Z_L - Z_C| = 80\ \Omega \\ P_{max} = P_2 = \frac{U^2}{2R'} \hspace{1,3cm} \end{matrix}\right.\)
\(\Rightarrow P_2 = \frac{200^2}{2.80} = \frac{200^2}{160} = 250\ (W)\)
\(\Rightarrow \frac{P_2}{P_1} = \frac{250}{240} = \frac{25}{24}\)

VD3: Cho mạch điện 
\(u_{AB} = 100\sqrt{2}\cos 100 \pi t \ (V);\ r = 30\ \Omega ;\ L = 318\ mH;\ C = \frac{10^{-3}}{6 \pi }F\). Khi R = R1 thì (PR)max. Khi R = R2 thì (PAB)max. Tìm tỉ số R1 và R2?
Giải:
\(\\Z_L = L\omega = 318.10^{-3}.100\pi = 100\ \Omega \\ Z_C = \frac{1}{C\omega } = \frac{1}{\frac{10^{-3}}{6\pi }.100 \pi } = 60\ \Omega \\ \cdot \ R = R_1 \Rightarrow (P_R)_{max} \Rightarrow R_1 = \sqrt{r^2 + (Z_L - Z_C)^2}\\ \Rightarrow R_1 = \sqrt{30^2 + (100-60)^2} = 50\ \Omega \\ \cdot \ R = R_2 \Rightarrow (P_{AB})_{max} \Rightarrow R_2 + r = |Z_L - Z_C| \\ \Rightarrow R_2 + 30 = |100-60| = 40 \Rightarrow R_2 = 10\ \Omega\)
Vậy: \(\frac{R_1}{R_2} = \frac{50}{10}= 5\)

Miễn phí

NỘI DUNG KHÓA HỌC

Học thử khóa H2 môn Vật lý năm 2018

Trải nghiệm miễn phí 15 bài học Chuyên đề 1: Dao động cơ học
1
00:59:15 Bài 1: Dao động điều hòa
Hỏi đáp
4
12
15
16
00:54:11 Bài 2: Con lắc lò xo
Hỏi đáp
17
00:24:02 Dạng 1: Cắt - Ghép lò xo
Hỏi đáp
10 Bài tập
23
Kiểm tra: Đề thi online phần con lắc lò xo
0 Hỏi đáp
45 phút
30 Câu hỏi
24
00:37:36 Bài 3: Con lắc đơn
Hỏi đáp
31
Kiểm tra: Đề thi online phần con lắc đơn
0 Hỏi đáp
45 phút
30 Câu hỏi
33
34
00:41:15 Dạng 2: Dao động tắt dần
Hỏi đáp
10 Bài tập
35
00:31:51 Dạng 3: Bài toán va chạm
Hỏi đáp
10 Bài tập
38
39
01:04:50 Bài 5: Tổng hợp dao động
Hỏi đáp
10 Bài tập
58
00:38:18 Bài 1: Đại cương về dòng điện xoay chiều
Hỏi đáp
10 Bài tập
60
62
00:30:31 Dạng 3: Cộng hưởng điện
Hỏi đáp
10 Bài tập
67
00:19:52 Dạng 1: Áp dụng công thức tính công suất
Hỏi đáp
10 Bài tập
68
00:19:37 Dạng 2: Cho công suất, tìm R, L, C hoặc ω
Hỏi đáp
10 Bài tập
70
00:37:43 Dạng 4: Khảo sát công suất
Hỏi đáp
10 Bài tập
74
01:16:48 Dạng 5: Bài toán cực trị
Hỏi đáp
10 Bài tập
75
00:21:15 Dạng 6: Độ lệch pha - Giản đồ vectơ
Hỏi đáp
10 Bài tập
76
77
00:32:14 Bài 5: Máy phát điện xoay chiều
Hỏi đáp
10 Bài tập
78
00:32:31 Bài 6: Động cơ điện xoay chiều
Hỏi đáp
10 Bài tập