Hướng dẫn FAQ Hỗ trợ: 0989 627 405  Tuyển Giáo Viên

GIỚI THIỆU BÀI HỌC

NỘI DUNG BÀI HỌC

I. Lý thuyết 
\vec{a}=(x_1,y_1,z_1)
\vec{b}=(x_2,y_2,z_2)
1) \left | \vec{a},\vec{b} \right |\leq \left | \vec{a} \right |.\left | \vec{b} \right |
\Rightarrow \left | x_1x_2+y_1y_2+z_1z_2 \right |\leq \sqrt{x^2_1+y^2_1+z_1^2}.\sqrt{x^2_2+y^2_2+z_2^2}
2) \left | \vec{a}+\vec{b} \right |\leq \left | \vec{a} \right |+\left | \vec{b} \right |
\Rightarrow \sqrt{(x_1+x_2)^2+(y_1+y_2)^2+(z_1+z_2)^2}\leq \sqrt{x^2_1+y^2_1+z^2_1}+\sqrt{x^2_2+y^2_2+z^2_2}
3) \left | \vec{a} +\vec{b} +\vec{c} \right |\leq \left | \vec{a} \right |+ \left | \vec{b} \right |+\left | \vec{c} \right |
\Rightarrow \sqrt{(x_1+x_2+x_3)^2+(y_1+y_2+y_3)^2+(z_1+z_2+z_3)^2}
\leq \sqrt{x^2_1+y_1^2+z_1^2}+\sqrt{x^2_2+y_2^2+z_2^2}+ \sqrt{x^2_3+y_3^2+z_3^2}
Dấu đẳng thức xảy ra khi \vec{a},\vec{b},\vec{c} cùng hướng
II. Bài tập
VD1: Tìm GTNN của biểu thức
T=\sqrt{x^2+y^2+z^2}+\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}} với x,y,z\neq 0
Giải
Xét \vec{a}=(x;y;z)\Rightarrow \left | \vec{a} \right |=\sqrt{x^2+y^2+z^2}
\vec{b}=\left ( \frac{1}{x};\frac{1}{y};\frac{1}{z} \right ) \Rightarrow \left | \vec{b} \right |=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}
\vec{a}+\vec{b}=\left ( x+\frac{1}{x}; y+\frac{1}{y} ;z+\frac{1}{z} \right )
\left | \vec{a}+\vec{b} \right |=\sqrt{(x+\frac{1}{x})^2+(y+\frac{1}{y})^2 +(z+\frac{1}{z})^2}
Do (x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2\geq 2+2=4
Tương tự (y+\frac{1}{y})^2\geq 4
(z+\frac{1}{z})^2\geq 4
\Rightarrow \left | \vec{a}+\vec{b} \right |\geq \sqrt{12}=2\sqrt{3}
Ta có \Rightarrow \left | \vec{a} \right |+\left | \vec{b} \right |\geq \left | \vec{a} +\vec{b}\right |
\Rightarrow \sqrt{x^2+y^2+z^2}+\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}} \geq 2\sqrt{3}
T\geq 2\sqrt{3}
GTNN T\geq 2\sqrt{3} 
Dấu đẳng thức xảy ra khi
\left\{\begin{matrix} \vec{a}, \vec{b} \ cung \ huong\\ x^2=y^2=z^2=1 \end{matrix}\right.\Rightarrow \bigg \lbrack\begin{matrix} x=y=z=1\\ x=y=z=-1 \end{matrix}
VD2: Cho x+2y+2z=9. Tìm GTNN của T=x^2+y^2+z^2
Giải
Xét \vec{a}=(1;2;2)\Rightarrow \left | \vec{a} \right |=\sqrt{1^2+2^2+2^2}=3
\vec{b}=(x;y;z)\Rightarrow \left | \vec{b} \right |=\sqrt{z^2+y^2+z^2}
\vec{a}.\vec{b}=x+2y+2z=9
Ta có \vec{a}.\vec{b}\leq \left | \vec{a} \right |.\left | \vec{b} \right |
\Rightarrow 9\leqslant 3.\sqrt{x^2+y^2+z^2}
\Rightarrow 9\leqslant x^2+y^2+z^2=T
GTNN = 9 khi \vec{a}, \vec{b} cùng hướng mà \vec{a}\neq \vec{0},\exists k\geq 0, \vec{b}=k.\vec{a}
\left\{\begin{matrix} x=k\\ y=2k\\ z=2k\\ x+2y+2z=9 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} k=1\\ x=1\\ y=2\\ z=2 \end{matrix}\right.
Vậy GTNN T = 9 khi x = 1, y = 2, z = 2
VD3: Cho (x-1)^2+(y-2)^2+(z-3)^2=9. Tìm GTNN, GTLN của T = x + 2y + 2z
Giải
Xét 
\vec{a}=(x-1;y-2;z-3)\Rightarrow \left | \vec{a} \right |=\sqrt{(x-1)^2+(y-2)^2+(z-3)^2}=3
\vec{b}=(1;2;2)\Rightarrow \left | \vec{b} \right |=\sqrt{1^2+2^2+2^2}=3
\vec{a}.\vec{b}=1(x-1)+2(y-2)+2(z-3)
=x+2y+2z-11
Ta có \left | \vec{a}.\vec{b} \right |\leq \left | \vec{a} \right |.\left | \vec{b} \right |
\Leftrightarrow \left | x+2y+2z-11 \right |\leq 9
\Leftrightarrow -9\leq x+2y+2z-11\leq 9
\Leftrightarrow 2\leq x+2y+2z\leq 20
\Leftrightarrow 2\leq T \leq 20
GTLN T = 20 khi \left\{\begin{matrix} x-1=\frac{y-2}{2}=\frac{z-3}{2}=\frac{z-3}{2}=k\geq 0\\ (x-1)^2+(y-2)^2+(z-3)^2=9 \end{matrix}\right.
\Rightarrow \left\{\begin{matrix} x-1=k\geq 0\\ y-2=2k\\ z-3=2k\\ 9k^2=9 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} k=1\\ x=2\\ y=4\\ z=5 \end{matrix}\right.
GTNN T = 2 khi x = 0, y = 0, z = 1
VD4: Cho x+y+z\leq 1, x,y,z>0. Tìm GTNN của T=\sqrt{x^2+\frac{1}{x^2}+1}+\sqrt{y^2+\frac{1}{y^2}+1}+\sqrt{z^2+\frac{1}{z^2}+1}
Giải
Xét
\vec{a}=(x;\frac{1}{x};1)\Rightarrow \left | \vec{a} \right |= \sqrt{x^2+\frac{1}{x^2}+1}
\vec{b}=(y;\frac{1}{y};1)\Rightarrow \left | \vec{b} \right |= \sqrt{y^2+\frac{1}{y^2}+1}
\vec{c}=(z;\frac{1}{z};1)\Rightarrow \left | \vec{c} \right |= \sqrt{z^2+\frac{1}{z^2}+1}
\vec{a}+\vec{b}+\vec{c}=(x+y+z;\frac{1}{x}+\frac{1}{y};\frac{1}{z};3)
\left | \vec{a}+\vec{b}+\vec{c} \right |= \sqrt{(x+y+z)^2+(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2+9}
\geq \sqrt{(x+y+z)^2+\frac{81}{(x+y+z)^2}+9}=T_1
Đặt t=(x+y+z)^2, 0<t\leq 1
T_1=\sqrt{t+\frac{81}{t}+9}=\sqrt{(t+\frac{1}{t})+\frac{80}{t}+9}
\geq \sqrt{2+80+9}=\sqrt{91}
Ta có \left | \vec{a} \right |+\left | \vec{b} \right |+\left | \vec{c} \right | \geq \left | \vec{a} + \vec{b} +\vec{c}\right |
T\geq \sqrt{91}
GTNN T\geq \sqrt{91}, đạt được khi x=y=z=\frac{1}{3}

Giảm 50% học phí 700.000đ 350.000đ

NỘI DUNG KHÓA HỌC

Học thử khóa H2 môn Toán năm 2018

Trải nghiệm miễn phí 8 bài học Chuyên đề 1: Đạo hàm và ứng dụng
28
00:20:04 Bài 1: Mặt nón - hình nón - khối nón
Hỏi đáp
10 Bài tập
29
00:31:25 Bài 2: Thể tích khối nón
Hỏi đáp
10 Bài tập
31
00:23:04 Bài 4: Mặt trụ - hình trụ - khối trụ
Hỏi đáp
10 Bài tập
32
00:16:58 Bài 5: Thể tích khối trụ
Hỏi đáp
10 Bài tập
34
00:58:51 Bài 7: Mặt cầu - hình cầu
Hỏi đáp
10 Bài tập
35
00:21:56 Bài 8: Thể tích khối cầu
Hỏi đáp
10 Bài tập
36
00:15:37 Bài 9: Diện tích mặt cầu
Hỏi đáp
10 Bài tập
37
00:32:41 Bài 10: Ôn tập, nâng cao
Hỏi đáp
10 Bài tập
38
Đề thi online chuyên đề Khối tròn xoay
0 Hỏi đáp
60 phút
20 Câu hỏi
39
00:27:49 Bài 1: Tọa độ của vectơ trong không gian
Hỏi đáp
5 Bài tập
40
00:40:44 Bài 2: Tọa độ của điểm trong không gian
Hỏi đáp
5 Bài tập
45
46
48
51
00:19:42 Bài 12: Bài toán góc giữa các mặt phẳng
Hỏi đáp
6 Bài tập
53
Kiểm tra: Đề thi online phần Mặt phẳng
0 Hỏi đáp
45 phút
20 Câu hỏi
57
00:14:57 Bài 17: Góc giữa hai đường thẳng
Hỏi đáp
5 Bài tập
58
60
Kiểm tra: Đề thi online phần Đường thẳng
0 Hỏi đáp
45 phút
20 Câu hỏi
61
00:19:21 Bài 20: Bài toán viết phương trình mặt cầu
Hỏi đáp
6 Bài tập
65
Kiểm tra: Đề thi online phần Mặt cầu
0 Hỏi đáp
45 phút
20 Câu hỏi
66
00:37:14 Bài 24: Ôn tập, nâng cao
Hỏi đáp
107
00:18:56 Bài 1: Các khái niệm cơ bản
Hỏi đáp
10 Bài tập
108
00:16:15 Bài 2: Phép toán với số phức
Hỏi đáp
10 Bài tập
109
00:25:32 Bài 3: Giải phương trình
Hỏi đáp
10 Bài tập
110
00:21:41 Bài 4: Ôn tập, nâng cao
Hỏi đáp
10 Bài tập
111
Kiểm tra: Đề thi online chuyên đề Số phức
0 Hỏi đáp
45 phút
20 Câu hỏi
112
Bài học 1
Hỏi đáp
113
Bài học 2
Hỏi đáp
114
Bài học 3
Hỏi đáp
115
Bài học 4
Hỏi đáp
116
Bài học 5
Hỏi đáp