GIỚI THIỆU BÀI HỌC
NỘI DUNG BÀI HỌC
1. Bất đẳng thức Cô - si (Cauchy)
Cho \(a,b \ge 0\). Khi đó \(\frac{{a + b}}{2} \ge \sqrt {ab} \)
Dấu "=" xảy ra \( \Leftrightarrow a = b\)
* Phương pháp
- Đánh giá điểm rơi
- Cân bằng hệ số
- Thêm bớt
VD1: Cho a, b>0. CMR \(\frac{a}{{\sqrt b }} + \frac{b}{{\sqrt a }} \ge \sqrt a + \sqrt b \)
Giải:
Ta có: \(\left\{ \begin{array}{l}
\frac{a}{{\sqrt b }} + \sqrt b \ge 2\sqrt {\frac{a}{{\sqrt b }}.\sqrt b } = 2\sqrt a \\
\frac{b}{{\sqrt a }} + \sqrt a \ge 2\sqrt {\frac{b}{{\sqrt a }}.\sqrt a } = 2\sqrt b
\end{array} \right.\)
\(\begin{array}{l}
\Rightarrow \frac{a}{{\sqrt b }} + \sqrt b + \frac{b}{{\sqrt a }} + \sqrt a \ge 2\sqrt a + 2\sqrt b \\
\Rightarrow \frac{a}{{\sqrt b }} + \frac{b}{{\sqrt a }} \ge \sqrt a + \sqrt b \left( {dpcm} \right)
\end{array}\)
VD2: Cho a, b >0. CMR \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}\)
Gỉai:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\frac{1}{a} + \frac{1}{b} \ge 2\sqrt {\frac{1}{{ab}}} \\
a + b \ge 2\sqrt {ab}
\end{array} \right.\\
\Rightarrow \left( {\frac{1}{a} + \frac{1}{b}} \right)\left( {a + b} \right) \ge 4\\
\Rightarrow \frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}
\end{array}\)
VD3: Cho a, b>0. CMR \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{3a + b}} + \frac{4}{{a + 3b}}\)
Giải:
Ta có:
\(\begin{array}{l}
\frac{4}{{3{\rm{a}} + b}} = \frac{4}{{2{\rm{a}} + \left( {a + b} \right)}} \le \frac{1}{{2{\rm{a}}}} + \frac{1}{{a + b}}\\
= \frac{1}{{2{\rm{a}}}} + \frac{4}{{4a + 4b}} \le \frac{1}{{2{\rm{a}}}} + \frac{1}{{4a}} + \frac{1}{{4b}} = \frac{3}{{4{\rm{a}}}} + \frac{1}{{4b}}
\end{array}\)
Tương tự \(\frac{4}{{a + 3b}} \le \frac{1}{{4{\rm{a}}}} + \frac{3}{{4b}} \Rightarrow dpcm\)
VD4: Cho a, b, c>0. CMR \(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)
VD5: Cho a, b, c>0. CMR \(\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ca}}{b} \ge a + b + c\)
VD6: Cho a, b >0 thỏa mãn ab=1. CMR \(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} \ge 3\)
2. Bất đẳng thức Co - si (Cauchy) trường hợp 3 số
Cho \(a,b,c \ge 0\). Khi đó \(\frac{{a + b + c}}{3} \ge \sqrt[3]{{abc}}\)
Dấu "=" xảy ra \( \Leftrightarrow a = b = c\)
Chứng minh:
Đặt \(d = \frac{{a + b + c}}{3}\)
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
a + b \ge 2\sqrt {ab} \\
c + d \ge 2\sqrt {c{\rm{d}}}
\end{array} \right.\\
\Rightarrow a + b + c + d \ge 2\left( {\sqrt {ab} + \sqrt {c{\rm{d}}} } \right)\\
\Rightarrow 4{\rm{d}} \ge 2\left( {\sqrt {ab} + \sqrt {c{\rm{d}}} } \right) \ge 2\left[ {2\sqrt {\sqrt {ab} .\sqrt {c{\rm{d}}} } } \right]\\
\Rightarrow {d^4} \ge abc{\rm{d}}\\
\Rightarrow \left[ \begin{array}{l}
d = 0 \Rightarrow a + b + c = 0\\
{d^3} \ge abc
\end{array} \right.\\
\Rightarrow d \ge \sqrt[3]{{abc}}\\
\Rightarrow \frac{{a + b + c}}{3} \ge \sqrt[3]{{abc}}
\end{array}\)
Dấu "=" xảy ra khi a=b=c
VD1: Cho a, b, c >0. CMR \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{{a + b + c}}\)
Giaỉ:
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 3\sqrt[3]{{\frac{1}{{abc}}}}\\
a + b + c \ge 3\sqrt[3]{{abc}}
\end{array} \right.\\
\Rightarrow \left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)\left( {a + b + c} \right) \ge 9\\
\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{{a + b + c}}
\end{array}\)
VD2: Cho \(a,b,c \ge 0\). CMR \({a^2}\sqrt {bc} + {b^2}\sqrt {ca} + {c^2}\sqrt {ab} \le {a^3} + {b^3} + {c^3}\)
VD3: Cho a,b,c >0. CMR \(\frac{4}{{2{\rm{a + b + c}}}} + \frac{4}{{2b{\rm{ + c + a}}}} + \frac{4}{{2c{\rm{ + a + b}}}} \ge \frac{9}{{{\rm{a + b + c}}}}\)
VD4: Cho a,b,c >0. CMR