Hướng dẫn FAQ Hỗ trợ: 0989 627 405

GIỚI THIỆU BÀI HỌC

Bài giảng sẽ giúp các em nắm được kiến thức cơ bản và nâng cao về Rút gọn biểu thức:

  • Lý thuyết về rút gọn biểu thức
  • Các dạng toán rút gọn biểu thức

NỘI DUNG BÀI HỌC

1. Lý thuyết

Bài toán: Rút gọn biểu thức chứa ẩn

- Tìm điều kiện để biểu thức có nghĩa 

  • \(\sqrt A \) có nghĩa khi \(A \ge 0\)
  • \(\frac{A}{B}\) có nghĩa khi \(B \ne 0\)
  • \(\sqrt {\frac{A}{B}} \) có nghĩa khi \(\left\{ \begin{array}{l}
    \frac{A}{B} \ge 0\\
    B \ne 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    AB \ge 0\\
    B \ne 0
    \end{array} \right.\)

- Thực hiện rút gọn

  • Khi rút gọn tổng, hiệu các phân thức thì trước hết ta tìm mẫu thức chung (gọn nhất)
  • Khi rút gọn phân thức ta phân tích tử và mẫu thành nhân tử rồi thực hiện rút gọn
  • Nếu biểu thức chứa các căn thức giống nhau thì đặt căn thức đó làm ẩn phụ. Đưa về bài toán rút gọn với ẩn phụ mới
  • Khi rút gọn biểu thức chứa nhiều biểu thức con ta có thể rút gọn từng biểu thức con trước

2. Bài tập

Ví dụ 1: Cho \(P = \frac{{x + 3}}{{\sqrt x  - 1}}\) và \(Q = \frac{{\sqrt x  + 3}}{{\sqrt x  + 2}} + \frac{{5\sqrt x  - 2}}{{x - 4}}\)

a. Rút gọn Q

b. Tính giá trị Q khi \(x = 7 + 4\sqrt 3 \)

c. Tìm gía trị nhỏ nhất của \(\frac{P}{Q}\)

Giải:

a. Q có nghĩa khi \(\left\{ \begin{array}{l}
x \ge 0\\
x - 4 \ne 0\\
\sqrt x  + 2 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
x \ne 4
\end{array} \right.\)

Đặt \(t = \sqrt x  \Rightarrow x = {t^2}\)

\(\begin{array}{l}
Q = \frac{{t - 1}}{{t + 2}} + \frac{{5t - 2}}{{{t^2} - 4}} = \frac{{\left( {t - 1} \right)\left( {t - 2} \right) + 5t - 2}}{{\left( {t - 2} \right)\left( {t + 2} \right)}}\\
 = \frac{{{t^2} - 2t - t + 2 + 5t - 2}}{{\left( {t - 2} \right)\left( {t + 2} \right)}} = \frac{{{t^2} + 2t}}{{\left( {t - 2} \right)\left( {t + 2} \right)}}\\
 = \frac{{t\left( {t + 2} \right)}}{{\left( {t - 2} \right)\left( {t + 2} \right)}} = \frac{t}{{t - 2}} = \frac{{\sqrt x }}{{\sqrt x  - 2}}
\end{array}\)

b.

\(\begin{array}{l}
\sqrt x  = \sqrt {7 + 4\sqrt 3 }  = \sqrt {{2^2} + {{\left( {\sqrt 3 } \right)}^2} + 4\sqrt 3 }  = \sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} \\
 = \left| {2 + \sqrt 3 } \right| = 2 + \sqrt 3 
\end{array}\)

\(Q = \frac{{2 + \sqrt 3 }}{{2 + \sqrt 3  - 2}} = \frac{{2 + \sqrt 3 }}{{\sqrt 3 }} = \frac{{2\sqrt 3  + 3}}{3}\)

c. 

\(\begin{array}{l}
\frac{P}{Q} = \frac{{x + 3}}{{\sqrt x  - 2}}:\frac{{\sqrt x }}{{\sqrt x  - 2}} = \frac{{x + 3}}{{\sqrt x  - 2}}.\frac{{\sqrt x  - 2}}{{\sqrt x }} = \frac{{x + 3}}{{\sqrt x }}\\
\frac{P}{Q} = \sqrt x  + \frac{3}{{\sqrt x }} \ge 2\sqrt {\sqrt x .\frac{3}{{\sqrt x }}} \\
\frac{P}{Q} \ge 2\sqrt 3 
\end{array}\)

GTNN \(\frac{P}{Q} = 2\sqrt 3 \) khi \(\sqrt x  = \frac{3}{{\sqrt 3 }} \Leftrightarrow x = 3\) (thỏa mãn điều kiện)

Chú ý: 

\(x \ge 0;y \ge 0,x + y \ge 2\sqrt {xy} \) (AM - GM, Cosi)

Dấu "=" khi x = y

Ví dụ 2: Rút gọn biểu thức 

\(A = \left( {\frac{{1 - a\sqrt a }}{{1 - \sqrt a }} + \sqrt a } \right).{\left( {\frac{{1 - \sqrt a }}{{1 - a}}} \right)^2}\)

Giải

A có nghĩa khi \(\left\{ \begin{array}{l}
a \ge 0\\
1 - \sqrt a  \ne 0\\
1 - a \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a \ge 0\\
a \ne 1
\end{array} \right.\)

Đặt \(\sqrt a  = t \Rightarrow a = {t^2}\)

\(\begin{array}{l}
A = \left( {\frac{{1 - {t^3}}}{{1 - t}} + t} \right){\left( {\frac{{1 - t}}{{1 - {t^2}}}} \right)^2}\\
 = \left[ {\frac{{\left( {1 - t} \right)\left( {1 + t + {t^2}} \right)}}{{1 - t}} + t} \right]{\left[ {\frac{{1 - t}}{{\left( {1 - t} \right)\left( {t + 1} \right)}}} \right]^2}\\
 = \left( {1 + t + {t^2} + t} \right){\left( {\frac{1}{{t + 1}}} \right)^2}\\
 = \left( {1 + 2t + {t^2}} \right)\left( {\frac{1}{{{t^2} + 2t + 1}}} \right) = 1
\end{array}\)

Ví dụ 3: Cho \(P = \frac{{{x^2} - \sqrt x }}{{x + \sqrt x  + 1}} - \frac{{2{\rm{x}} + \sqrt x }}{{\sqrt x }} + \frac{{2\left( {x - 1} \right)}}{{\sqrt {x - 1} }}\)

a. Rút gọn P

b. Tìm GTNN của P

c. Tìm x để \(Q = \frac{{2\sqrt x }}{P}\) nhận giá trị là số nguyên

Ví dụ 4: Cho \(B = \left( {\frac{{y\sqrt y  - 1}}{{y - \sqrt y }} - \frac{{y\sqrt y  + 1}}{{y + \sqrt y }}} \right):\frac{{2\left( {y - 2\sqrt y  + 1} \right)}}{{y - 1}}\)

a. Rút gọn B

b. Tìm tất cả các số nguyên y để B có giá trị là số nguyên

 

 

 

 

 

Giảm 30% học phí 900.000đ 630.000đ

NỘI DUNG KHÓA HỌC

Ôn tập Toán NC 8

Ôn tập kiến thức Toán nâng cao lớp 8 và nhập môn kiến thức Toán nâng cao lớp 9
 Giáo viên: TS.Phạm Sỹ Nam

Học kỳ 1: Toán nâng cao lớp 9

Chuyên đề nâng cao về căn bậc hai, căn bậc ba; hàm số bậc nhất; hệ thức lượng trong tam giác vuông; một số vấn đề liên quan đến đường tròn...
13
01:06:09 Bài 3: Rút gọn biểu thức
Hỏi đáp
21
29
31
00:49:17 Bài 17: Hàm số bậc nhất
Hỏi đáp
33
47
13/11/2018 Ôn thi cuối học kì I
Hỏi đáp
49
20/11/2018 Kiểm tra cuối học kì I
Hỏi đáp

Học kỳ 2: Toán nâng cao lớp 9

Chuyên đề nâng cao về hệ phương trình bậc nhất hai ẩn; hàm số y=ax^2, phương trình bậc hai một ẩn; các góc liên quan đến đường tròn; tứ giác nội tiếp; hình trụ - hình nón - hình cầu...
59
01/01/2019 Bài 9: Tứ giác nội tiếp
Hỏi đáp
67
29/01/2019 Ôn thi giữa học kì II
Hỏi đáp
69
05/02/2019 Kiểm tra giữa kì II
Hỏi đáp
85
02/04/2019 Bài 31: Hình cầu
Hỏi đáp
86
06/04/2019 Bài 32: Bài tập về Hình cầu
Hỏi đáp
87
09/04/2019 Ôn thi cuối học kì II
Hỏi đáp
89
16/04/2019 Kiểm tra cuối học kì II
Hỏi đáp