Hướng dẫn FAQ Hỗ trợ: 0989 627 405  Tuyển Giáo Viên

GIỚI THIỆU BÀI HỌC

NỘI DUNG BÀI HỌC

Câu 1: Từ thông qua một vòng dây dẫn là \Phi =\frac{2.10^{-2}}{\pi}cos\left ( 100 \pi t +\frac{\pi}{4} \right )(Wb). Biểu thức của suất điện động cảm ứng xuất hiện trong vòng dây này là

            A. e=-2 sin \left ( 100 \pi t +\frac{\pi}{4} \right )(V)        B. e=2 sin \left ( 100 \pi t +\frac{\pi}{4} \right )(V)

            C. e=-2 sin 100 \pi t (V)                        D. e=2 \pi sin 100 \pi t (V)

Lời giải
\Phi =\frac{2.10^{-2}}{\pi}.cos(100 \pi t + \frac{\pi }{4}(Wb)
\Rightarrow e=-\Phi '(t)=100 \pi .\frac{2.10^{-2}}{\pi}sin(100 \pi t + \frac{\pi }{4})
=2.sin(100 \pi t + \frac{\pi }{4})(V)

Câu 2: Một mạng điện xoay chiều 220 V – 50 Hz, khi chọn pha ban đầu của điện áp bằng không thì biểu thức của điện áp có dạng
           A. u = 220cos50t  (V)                                     B. u = 220cos50\pi (V)

           C. u=220\sqrt{2}cos100 \pi t (V)  (V)            D. u= 220cos100 \pi t (V) 

Lời giải
(220 V – 50 Hz)
\Rightarrow \left\{\begin{matrix} U_0=U\sqrt{2}=220\sqrt{2}\\ \omega =2 \pi f =100 \pi \frac{rad}{s} \end{matrix}\right.
\varphi _u=0\Rightarrow u=220\sqrt{2}.cos(100 \pi t)(V)

Câu 3: Dòng điện chạy qua đoạn mạch xoay chiều có dạng i = 2cos 100 \pi t (A), hiệu điện thế giữa hai đầu đoạn mạch có giá trị hiệu dụng là 12V, và sớm pha so với dòng điện. Biểu thức của điện áp  giữa hai đầu đoạn mạch là
            A. u = 12cos100 \pit (V).                                              B. u = 12\sqrt{2}cos100\pi t (V).
            C. u = 12\sqrt{2}cos(100 \pi t - \pi /3) (V).                D. u = 12 \sqrt{2}cos(100 \pi t + \pi/3)(V).

Lời giải
i=2.cos100 \pi t (A), \left\{\begin{matrix} U=12V\Rightarrow U_0=12\sqrt{2}\\ som \ pha \ \frac{\pi}{3}/i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{matrix}\right.
\varphi _u=\varphi _i+\frac{\pi}{3}=\frac{\pi}{3}\Rightarrow u= 12\sqrt{2}.cos(100 \pi t + \frac{\pi}{3})

Câu 4: Đặt điện áp u = U_0cos(100\pi t - \frac{\pi}{3})V vào hai đầu một cuộn cảm thuần có độ tự cảm \frac{1}{2\pi} H. Ở thời điểm điện áp giữa hai đầu cuộn cảm thuần ℓà 150 V thì cường độ dòng điện trong mạch là 4A. Giá trị cường độ dòng điện hiệu dụng trong mạch là

      A. 4A                                   B. 4\sqrt{3}A                        C. 2,5\sqrt{2} A                        D. 5 A

Lời giải
u=U_0.cos(100 \pi t -\frac{\pi}{3}); L=\frac{1}{2 \pi }H
\left\{\begin{matrix} u_1=150V\\ i=4A \end{matrix}\right.\Rightarrow \left ( \frac{u_L}{U_{0L}} \right )^2+ \left ( \frac{i}{I_0} \right )^2=1 \ (1)U_0=I_0.Z_L \ \ (2)
Từ (1) (2) \Rightarrow I^2_0=\left ( \frac{u_L}{Z_L} \right )^2+i^2= \left ( \frac{150}{50} \right )^2+4^2
\Rightarrow I_0=5A\Rightarrow I=\frac{I_0}{\sqrt{2}}=2,5\sqrt{2}A

Câu 5: Đoạn mạch AB chỉ gồm một phần tử chưa xác định (có thể là R, L hoặc C). Trong đó ta xác định được biểu thức dòng điện i = 4cos(100\pit) A và biểu thức điện áp u = 40cos(100\pit - \pi/2) V. Hãy xác định phần tử trên là phần tử gì và tính giá trị của phần tử trên?

      A. R = 10 \Omega                         B. C = \frac{10^{-3}}{\pi}F                   C. L = \frac{0,1}{\pi} H                      D. C = \frac{10^{-4}}{\pi} F

Lời giải
\left\{\begin{matrix} i=4cos100 \pi t (A)\\ i=40cos(100 \pi -\frac{\pi}{2})( V) \end{matrix}\right.\Rightarrow \varphi _u=-\frac{\pi }{2}
⇒ u chậm pha \frac{\pi }{2}/i\Rightarrow Mạch chứa tụ C
\Rightarrow Z_C=\frac{U_0}{I_0}=10\Omega \Rightarrow C= \frac{1}{Z_C.\omega }=\frac{10^{-3}}{\pi}F

Câu 6: Cho đoạn mạch RC mắc nối tiếp vào nguồn điện xoay chiều. Biết R = 30 \Omega và các điện áp như sau: UR = 90V, UC = 150V, tần số dòng điện là 50Hz. Hãy tìm điện dung của tụ:

      A. 50F                                 B. 50.10-3 F                      C. \frac{10^{-3}}{5\pi} F                           D. C = \frac{10^{-4}}{\pi}F

Lời giải
RC: \ \ \ R= 30\Omega , U_R=90V;U_C=150W
I=\frac{U_C}{Z_C}=\frac{U_R}{R}\Rightarrow Z_C=\frac{R}{U_R}*U_C=50\Omega
\Rightarrow C=\frac{1}{Z_C.2\pi.f}=\frac{10^{-3}}{5\pi}(F)

Câu 7: Một cuộn dây có điện trở thuần 40 \Omega. Độ ℓệch pha giữa điện áp hai đầu cuộn dây và dòng điện qua cuộn dây ℓà 450. Tính cảm kháng và tổng trở của cuộn dây?

      A. ZL = 50 \Omega; Z = 50\sqrt{2} \Omega                                           B. ZL = 49 \Omega; Z = 50 \Omega     

      C. ZL = 40\Omega; Z = 40\sqrt{2} \Omega                                            D. ZL = 30\Omega; Z = 30\sqrt{2} \Omega

Lời giải
Cuộn dây có R=40\Omega ,\varphi =45^0
tan \varphi =\frac{Z_L}{R}\Rightarrow \frac{Z_L}{40}=1\Rightarrow Z_L=40\Omega
Z=\sqrt{R^2+Z^2_L}=40\sqrt{2}\Omega

Câu 8: Mạch RLC mắc nối tiếp có U = 50 V, điện trở R = 40 \Omega, C = 10-4/\pi F, biết khi tần số trong mạch là 50 Hz thì cường độ dòng điện là 1A. Tìm cảm kháng khi đó?

      A. 70 hoặc 130 \Omega                B. 100 \Omega                          C. 60 \Omega; 140 \Omega                  D. 50 \Omega

Lời giải
U=50V;R=40\Omega ;C=\frac{10^{-4}}{\pi}F;\left\{\begin{matrix} f=50Hz\\ I=1A \end{matrix}\right.
Z=\frac{50}{I}=50\Omega ;Z_C=\frac{1}{C2.\pi f}=100\Omega
Z^2=R^2+(Z_L-Z_C)^2\Rightarrow 50^2=40^2+(Z_L-100)^2\Rightarrow \bigg \lbrack\begin{matrix} Z_L=70\Omega \\ Z_L=130\Omega \end{matrix}

Câu 9: Mạch điện gồm cuộn dây có điện trở thuần R = 30 \Omega, L = 0,4/\pi H, đặt vào hai đầu mạch hiệu điện thế xoay chiều có giá trị 50 V thì cường độ dòng điện trong mạch là 1A. Tính tần số dòng điện của mạch?

      A. 100 Hz                            B. 50 Hz                          C. 40 Hz                            D. 60Hz

Lời giải
R=30\Omega , L=\frac{0,4}{\pi}(H);\left\{\begin{matrix} U=50V\\ I=1A \end{matrix}\right.
Z=\frac{U}{I}=50=\sqrt{R^2+Z^2_L}
\Rightarrow Z_L=\sqrt{50^2-30^2}=40=L.2\pi . f
\Rightarrow f=\frac{40}{\frac{0,4}{\pi}.2\pi}=50Hz

Câu 10: Mạch điện xoay chiều AB gồm R =30\sqrt{3}\Omega, cuộn cảm thuần có L = \frac{1}{2\pi} H và tụ C = \frac{5.10^{-4}}{\pi}F mắc nối tiếp. Đặt vào hai đầu A, B của đoạn mạch hiệu điện thế ℓà u = 120cos(100\pit + \pi/6) V. Biểu thức i ℓà?

            A. i = 2\sqrt{2}cos(100\pit) A                                               B. i = 4\sqrt{2}cos(100\pit - \pi/6) A

            C. i = 4\sqrt{2}cos(100\pit - \pi/6) A                                       D. i = 2\sqrt{2}cos(100\pit + \pi/2) A

Lời giải
R=30\sqrt{3}\Omega ;L=\frac{1}{2\pi}H; C=\frac{5.10^{-4}}{\pi}F
u=120\sqrt{2}.cos(100 \pi t+\frac{\pi}{6})(V )\Rightarrow \left\{\begin{matrix} Z_L=50\Omega \\ Z_C=20\Omega \end{matrix}\right.
I_0=\frac{U_0}{\sqrt{R^2+(Z_L-Z_C)^2}}=\frac{120\sqrt{2}}{\sqrt{3.30^2+30^2 }}=2\sqrt{2}A
tan\varphi =\frac{Z_L-Z_C}{R}=\frac{1}{\sqrt{3}}\Rightarrow P= \frac{\pi}{6}\Rightarrow \varphi _i=0

Câu 11: Mạch RLC mắc nối tiếp có R = 100\sqrt{3} \Omega, cuộn cảm thuần có L = \frac{1}{\pi} H và tụ C = \frac{10^{-4}}{2\pi}F. Biểu thức uRL = 200cos100\pit V. Biểu thức hiệu điện thế hai đầu đoạn mạch là

            A. u = 100\sqrt{2}cos(100\pit) V                                      B. u = 400 cos(100\pit + \pi/3) V

            C. u = 400 cos(100\pit) V                                           D. u = 100\sqrt{2}cos(100\pit - \pi/3) V

Lời giải
R=100\sqrt{3};L=\frac{1}{\pi}H,C=\frac{10^{-4}}{2\pi}F
u_{RL}=200.cos 100 \pi t (V)\Rightarrow \left\{\begin{matrix} Z_L=100\Omega \\ Z_C=200\Omega \end{matrix}\right.
U_0\angle \varphi _u=\frac{U_{ORL}\angle \varphi _{URL}}{R+Z_L.i}. \left [ R+(Z_L-Z_C)i \right ]
=\frac{200\angle 0}{100\sqrt{3}+100i}*(100\sqrt{3}-100i)
=a+bi\rightarrow shift \rightarrow (2)\rightarrow (3)
=400\angle \frac{\pi }{3}

Câu 12: Một đoạn mạch gồm cuộn dây có r = 10 \Omega, độ tự cảm L = \frac{25.10^{-2}}{\pi } H mắc nối tiếp với một điện trở thuần R = 15 \Omega. Đặt vào hai đầu mạch một hiệu điện thế xoay chiều có u = 100\sqrt{2}cos(100\pit) V. Viết phương trình dòng điện trong mạch?

            A. i = 2\sqrt{2}cos(100\pit + \pi/4) A                                B. i = 2\sqrt{2}cos(100\pit - \pi/4) A

            C. i = 4 cos(100\pit - \pi/4) A                                      D. i = 4 cos(100\pit + \pi/4) A

Lời giải
r=10\Omega , L=\frac{25.10^{-2}}{\pi }H\Rightarrow Z_L=25\Omega
R=15\Omega , u=100\sqrt{2}.cos100\pi t (V)
R_b=R+r=25\Omega
I_0\angle \varphi _i=\frac{U_0\angle \varphi _u}{R_b+Z_L.i}=\frac{100\sqrt{2}\angle 0}{25+25i}
=4\angle -\frac{\pi}{4}

Câu 13: Cho mạch điện xoay chiều gồm điện trở thuần R = 20\Omega, cuộn dây thuần cảm và tụ điện C = mF mắc nối tiếp. Biểu thức điện áp giữa hai đầu tụ điện ℓà: uC = 50cos(100\pit - 2\pi/3)(V). Biểu thức điện áp giữa hai đầu điện trở R ℓà

            A. uR = 100 cos(100\pit +\pi/ 6)(V)                                  B. không viết được vì thiếu dữ kiện

            C. uR = 100\sqrt{2}cos(100\pit - \pi/6)(V)                              D. uR= 100 cos(100\pit - \pi/6)(V)

Lời giải
R=20\Omega , C=\frac{1}{\pi}.10^{-3}F\Rightarrow Z_C=10\Omega
u_C=50.cos(100\pi t -\frac{2\pi}{3})(V)
U_{OR}\angle \varphi _u_R=\frac{U_{OC}< \varphi _{uc}}{-Z_Ci }*R= \frac{50\angle -\frac{2\pi}{3}}{-10i}*20
=100\angle -\frac{\pi}{6}

Câu 14: Mạch điện xoay chiều RLC mắc nối tiếp, với cảm kháng ZL = 10\Omega, dung kháng ZC = 5\Omega ứng với tần số f. Khi f thay đổi đến f’ thì trong mạch có hiện tượng cộng hưởng điện. Hỏi tỷ ℓệ nào sau đây ℓà đúng?

            A. \sqrt{2}f = f’                  B. f = 0,5f’                  C. f = 4f’                     D. f = \sqrt{2}f’

Lời giải
f:\left\{\begin{matrix} z_L=10\Omega \\ z_C=5\Omega \end{matrix}\right.\Rightarrow \frac{Z_L}{Z_C}=L.C.\omega ^2=2 \ \ (1)
f'\Rightarrow \omega '^2=\frac{1}{LC} \ (2)
Từ (1) (2) \Rightarrow \frac{\omega ^2}{\omega '^2}=2\Rightarrow \omega ^2=\frac{\omega }{\sqrt{2}}\Rightarrow f'=\frac{f}{\sqrt{2}}

Câu 15: Lần ℓượt đặt các điện áp xoay chiều u_1 = U\sqrt{2}cos(100\pi t + \varphi _1); u_2 = U\sqrt{2}cos(120\pi t + \varphi 2); u_3 = U\sqrt{2}cos(110 \pi t + \varphi _3) vào hai đầu đoạn mạch gồm điện trở thuần R, cuộn cảm thuần có độ tự cảm L và tụ điện có điện dung C mắc nối tiếp thì cường độ dòng điện trong đoạn mạch có biểu thức tương ứng ℓà: i_1 = I\sqrt{2}cos(100\pi t); i_2 = I\sqrt{2}cos(120\pi t +\frac{2\pi}{3} ); i_3 = I'\sqrt{3}cos(110\pi t - \frac{2\pi}{3}). So sánh I và I’, ta có:

            A. I = I’.                       B. I = I’\sqrt{2}.                  C. I < I’.                       D. I > I’.

Lời giải
\left\{\begin{matrix} u_1=U\sqrt{2}cos (100 \pi t +\varphi _1)\\ u_2=U\sqrt{2}cos(120 \pi t +\varphi _2)\\ u_3=U\sqrt{2}cos(110 \pi t+\varphi _3) \end{matrix}\right.\Rightarrow \left\{\begin{matrix} i_1=I\sqrt{2}cos 100\pi t\\ i_2=I\sqrt{2}.cos(120 \pi t +\frac{2\pi}{3})\\ i_3=I'\sqrt{2}.cos(110 \pi t -\frac{2\pi}{3}) \end{matrix}\right.
\omega _0=\sqrt{\omega _1.\omega _2}=109,5\pi\Rightarrow I_0 lớn nhất
\Rightarrow \left | \omega _1-\omega _0 \right |> \left | \omega _3-\omega _0 \right |\Rightarrow I_{01}<I_{03}\Rightarrow I<I'Câu 16: Một mạch điện xoay chiều không phân nhánh gồm: điện trở thuần R, cuộn cảm chỉ có độ tự cảm L=\frac{1}{\pi} H và tụ điện có điện dung C. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều: u=100\sqrt{2}cos(100\pi t ) V  thì điện áp hiệu dụng ở hai đầu điện trở UR = 100 V. Điện dung của tụ xấp xỉ bằng

            A. 31,8 \mu F                   B. 15,9 \mu F                   C. 63,6 \mu F                 D. 0,318 \mu F

Lời giải
RLC, L=\frac{1}{\pi}H
u=100\sqrt{2}.cos100 \pi t (V)\Rightarrow U_R=100V=U
⇒ Mạch xảy ra CHĐ \Rightarrow Z_C=Z_L=100\Omega
\Rightarrow C=\frac{1}{Z_C\omega }=\frac{10^{-4}}{\pi}F=31,8\mu F

Câu 17: Đặt vào hai đầu mạch điện RLC nối tiếp một điện áp xoay chiều u có giá trị hiệu dụng không đổi thì điện áp hiệu dụng trên các phần tử R, L và C lần lượt bằng 60 V; 120 V và 40 V. Khi thay tụ C bằng tụ C’ để điện áp hiệu dụng hai đầu điện trở R bằng 100 V, ta thấy

            A. UC’ = UL’ = 120 V                                      B. UC’ = UL’ = 40 V

            C. u cùng pha uR.                                           D. mạch không tiêu thụ công suất.

Lời giải
\left\{\begin{matrix} U_R=60V\\ U_L=120V\\ U_C=40V \end{matrix}\right.\Rightarrow U=\sqrt{U^2_R+(U_L-U_C)^2}=100V
Thay tụ C \Rightarrow U'_R=100V=U\Rightarrow Xảy ra CHĐ
\frac{U'_L}{U'_R}=\frac{U_L}{U_R}=2\Rightarrow U'_L=2U'_R=200V=U'_2

Câu 18: Mạch điện xoay chiều (R1L1C1) có tần số góc cộng hưởng là \omega1. Mạch điện xoay chiều (R2L2C2) có tần số góc cộng hưởng là \omega2. Biết \omega1 = \omega= 120\pi rad/s. Nếu hai đoạn mạch đó mắc nối tiếp với nhau thì tần số cộng hưởng là

            A. f = 60 Hz                B. f = 100 Hz               C. f = 120 Hz               D. f = 50 Hz

Lời giải
\left.\begin{matrix} R_1L_1C_1\Rightarrow \omega ^2_1=\frac{1}{L_1C_1}\\ \\ R_2L_2C_2\Rightarrow \omega ^2_2=\frac{1}{L_2C_2} \end{matrix}\right\}\Rightarrow L_1C_1=L_2C_2
R1L1C1 nối tiếp R2L2C2 \Rightarrow \left\{\begin{matrix} R_b=R_1+R_2\\ L_b=L_1+L_2\\ C_b=\frac{C_1.C_2}{C_1+C_2} \end{matrix}\right.
\omega ^2=\frac{1}{L_bC_b}=\frac{1}{(L_1+L_2).\frac{C_1.C_2}{C_1+C_2}} =\frac{1}{\frac{L_1C_1C_2+L_2C_1C_2}{C_1+C_2}}
=\frac{1}{\frac{L_2C_2C_2+L_2C_1C_2}{C_1+C_2}}=\frac{1}{L_2C_2}=\omega ^2_2
\Rightarrow \omega =\omega _2=120\pi \Rightarrow f=60Hz

 

Câu 19: Cho đoạn mạch RLC nối tiếp có giá trị các phần tử cố định. Đặt vào hai đầu đoạn này một hiệu điện thế xoay chiều có tần số thay đổi. Khi tần số góc của dòng điện bằng \omega0 thì cảm kháng và dung kháng có giá trị ZL = 100 \Omega và ZC = 25 \Omega. Để mạch xảy ra cộng hưởng, ta phải thay đổi tần số góc của dòng điện đến giá trị \omega bằng

            A. 2\omega0                          B. 0,25\omega0                    C. 4\omega0                         D. 0,5\omega0

Lời giải
\omega _0:\left\{\begin{matrix} Z_L=100\\ Z_C=25 \end{matrix}\right.\Rightarrow \frac{Z_L}{Z_C}=L.C.\omega ^2_0=4 \ \ (1)
\omega ^2=\frac{1}{LC} \ \ (2)
Từ (1) (2) 
\Rightarrow \frac{\omega _0^2}{\omega ^2}=4\Rightarrow \frac{\omega _0}{\omega }=2

Câu 20: Cho mạch điện xoay chiều RLC mắc nối tiếp: Biết R = 150 \Omega, khi dòng điện xoay chiều qua mạch có tần số góc \omega = 100\pi rad/s thì mạch có cộng hưởng. Khi dòng điện xoay chiều qua mạch có tần số góc \omega’ = 2\omega thì điện áp hai đầu AB nhanh pha 450 so với dòng điện. Giá trị của L bằng

            A. L = \frac{10^{-4}}{\pi} H.             B. L = \frac{1}{\pi} H.                C. L = \frac{10^{-4}}{3\pi} H.             D. \frac{3}{\pi} H.

Lời giải
R=150\Omega
\omega =100\pi \Rightarrow Z_L=Z_C
\omega '=2\omega \Rightarrow \left\{\begin{matrix} Z_L'=2Z_L\\ Z'_C=\frac{Z_C}{2}=\frac{Z_L}{2} \end{matrix}\right.
\Rightarrow tan\varphi '=\frac{Z'_L-Z'_C}{R}=1\Rightarrow \frac{2Z_L-\frac{Z_L}{2}}{R}=1
\Rightarrow \frac{3}{2}Z_L=R\Rightarrow Z_L=100\Rightarrow L=\frac{Z_L}{\omega }=\frac{1}{\pi}H

Giảm 50% học phí 700.000đ 350.000đ

NỘI DUNG KHÓA HỌC

Học thử khóa H2 môn Vật lý năm 2018

Trải nghiệm miễn phí 15 bài học Chuyên đề 1: Dao động cơ học
1
00:59:15 Bài 1: Dao động điều hòa
Hỏi đáp
4
12
15
16
00:54:11 Bài 2: Con lắc lò xo
Hỏi đáp
17
00:24:02 Dạng 1: Cắt - Ghép lò xo
Hỏi đáp
10 Bài tập
23
Kiểm tra: Đề thi online phần con lắc lò xo
0 Hỏi đáp
45 phút
30 Câu hỏi
24
00:37:36 Bài 3: Con lắc đơn
Hỏi đáp
31
Kiểm tra: Đề thi online phần con lắc đơn
0 Hỏi đáp
45 phút
30 Câu hỏi
33
34
00:41:15 Dạng 2: Dao động tắt dần
Hỏi đáp
10 Bài tập
35
00:31:51 Dạng 3: Bài toán va chạm
Hỏi đáp
10 Bài tập
38
39
01:04:50 Bài 5: Tổng hợp dao động
Hỏi đáp
10 Bài tập
58
00:38:18 Bài 1: Đại cương về dòng điện xoay chiều
Hỏi đáp
10 Bài tập
60
62
00:30:31 Dạng 3: Cộng hưởng điện
Hỏi đáp
10 Bài tập
67
00:19:52 Dạng 1: Áp dụng công thức tính công suất
Hỏi đáp
10 Bài tập
68
00:19:37 Dạng 2: Cho công suất, tìm R, L, C hoặc ω
Hỏi đáp
10 Bài tập
70
00:37:43 Dạng 4: Khảo sát công suất
Hỏi đáp
10 Bài tập
74
01:16:48 Dạng 5: Bài toán cực trị
Hỏi đáp
10 Bài tập
75
00:21:15 Dạng 6: Độ lệch pha - Giản đồ vectơ
Hỏi đáp
10 Bài tập
76
77
00:32:14 Bài 5: Máy phát điện xoay chiều
Hỏi đáp
10 Bài tập
78
00:32:31 Bài 6: Động cơ điện xoay chiều
Hỏi đáp
10 Bài tập
120
Bài 1
Hỏi đáp
121
Bài 2
Hỏi đáp
122
Bài 3
Hỏi đáp
123
Bài 4
Hỏi đáp
124
Bài 5:
Hỏi đáp