Hướng dẫn Hỗ trợ: 098 1821 807 (8h30 - 21h)

GIỚI THIỆU BÀI HỌC

Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như:

  • Công thức tính.
  • Điều kiện đủ để hàm số đơn điệu trên một miền.

NỘI DUNG BÀI HỌC

Trong bài học hôm nay chúng ta sẽ học bài toán là Tìm tham số để hàm số đơn điệu trên một miền, để phục vụ cho việc giải bài toán này chúng cần thêm kiến thức sau đây.

I. \ f(x)=ax^2+bx+c \ \ (a\neq 0)

f(x)\geqslant 0\forall x\in R\Leftrightarrow \left\{\begin{matrix} a>0\\ \Delta \leqslant 0 \end{matrix}\right.
f(x)\leqslant 0\forall x\in R\Leftrightarrow \left\{\begin{matrix} a<0\\ \Delta \leqslant 0 \end{matrix}\right.
VD1: Tìm m để hàm số f(x)= x^3+(m-1)x^2+(m^2-4)x+9 đồng biến trên R.
Giải
TXĐ: D = R
f'(x)= 3x^2+2(m-1)x+ m^2 - 4
f'(x) = 0 tối đa 2 nghiệm
Để hàm số đồng biến trên R thì f(x)\geqslant 0 \ \forall x\in R
\Leftrightarrow \left\{\begin{matrix} 3>0\\ \Delta '=(m-1)^2-3(m^2-4)\leq 0 \end{matrix}\right.
\Leftrightarrow m^2-2m+1-3m^2+12\leq 0
\Leftrightarrow -2m^2-2m+13\leq 0
-2m^2-2m+13=0\Leftrightarrow 2m^2+2m-13=0
\Leftrightarrow \bigg \lbrack\begin{matrix} m=\frac{1-3\sqrt{3}}{2}\\ m=\frac{1+3\sqrt{3}}{2} \end{matrix}
KL: \bigg \lbrack\begin{matrix} m\leq \frac{1-3\sqrt{3}}{2}\\ m\geq \frac{1+3\sqrt{3}}{2} \end{matrix}
VD2: Tìm m để hàm số f(x)=[(m^2-2m)\frac{x^2}{3}+mx+3] đồng biến trên R
Giải 
TXĐ: D = R
f'(x)=(m^2-2m)\frac{x^3}{3}+mx^2+3x
f'(x)=(m^2-2m)x^2+2mx+3
TH1: m^2-2m=0\Leftrightarrow \begin{bmatrix} m=0\\ m=2 \end{matrix}
m=0, f(x)=3>0\forall x\in R  hàm số đồng biến trên R

m=2, f(x)=4x+3, f'(x)\geqslant 0\Leftrightarrow x\geqslant -\frac{3}{4}  m=2 (không thỏa mãn)
TH2: m^2-2m\neq 0
f'(x) là tam thức bậc hai có tối đa 2 nghiệm 
Hàm số đồng biến trên R khi  f(x)\geq 0 \ \forall x\in R
\left\{\begin{matrix} m^2-2m>0\\ \Delta '=m^2-3(m^2-2m)\leq 0 \end{matrix}\right.
\Leftrightarrow \left\{\begin{matrix} m^2-2m>0\\ -2m^2+6m\leq 0 \end{matrix}\right.
VD3: Tìm m để hàm số f(x)=-x^3+3x^2+3mx-1 nghịch biến trên (0;+\infty )
Giải
TXĐ: D = R
f'(x)=-3x^2+6x+3m
f(x) là tam thức b2, f(x) = 0 có tối đa 2 nghiệm
Để hàm số nghịch biến trên  thì
f'(x)\leq 0, \forall x\in (0;+\infty )
\Leftrightarrow -3x^2+6x+3m\leq 0 \ \ \forall x\in (0;+\infty )
\Leftrightarrow m\leq x^2-2x \ \ \forall x\in (0;+\infty )
Xét g(x)=x^2-2x trên (0;+\infty )
g'(x)=2x-2, \ g'(x)=0\Leftrightarrow x=1

KL: m\leq -1
VD4: Tìm m để hàm số f(x)=\frac{3mx+1}{x-2}
a) Nghịch biến trên các khoảng  (-\infty ;2),(2;+\infty )
​b) Đồng biến trên các khoảng (-\infty ;2),(2;+\infty )
Giải
a) D=R \ {2}
f'(x)=\frac{3m(x-2)-(3mx+1)}{(x-2)^2}
=\frac{-6m-1}{(x-2)^2}
TH1: -6m-1=0\Leftrightarrow m=-\frac{1}{6}
Khi đó  f(x)=0 \ \forall x\neq 2
Hàm số f(x)=-\frac{1}{2} \ \forall x\neq 2

Hàm số không đồng biến, nghịch biến trên (-\infty ;2),(2;+\infty )
TH2: -6m-1\neq 0\Leftrightarrow m\neq -\frac{1}{6}
Hàm số nghịch biến
(-\infty ;2),(2;+\infty ) thì f'(x)<0\forall x\neq 2\Leftrightarrow -6m-1<0
\Leftrightarrow -6m<1
\Leftrightarrow m> -\frac{1}{6}
KL: m> -\frac{1}{6}

b)
TH1: -6m-1=0\Leftrightarrow m=-\frac{1}{6}
(tương tự a) m=-\frac{1}{6} ( không thỏa mãn)
TH2: -6m-1\neq 0\Leftrightarrow m=\neq -\frac{1}{6}

Hàm số đồng biến trên (-\infty ;2),(2;+\infty ) khi f'(x)>0 \ \forall x\neq 2\Leftrightarrow -6m-1>0
\Leftrightarrow -6m>1
\Leftrightarrow m< -\frac{1}{6}
KL: m< -\frac{1}{6}

Giảm 40% học phí 700.000đ 420.000đ

NỘI DUNG KHÓA HỌC

Học thử khóa H2 môn Toán năm 2017

Trải nghiệm miễn phí 8 bài học Chuyên đề 1: Đạo hàm và ứng dụng
 Giáo viên: TS.Phạm Sỹ Nam

Chuyên đề 3: Khối đa diện

 Giáo viên: TS.Phạm Sỹ Nam
23
00:23:12 Bài 1: Khái niệm khối đa diện
Hỏi đáp
10 Bài tập
24
00:33:36 Bài 2: Tính thể tích bằng cách trực tiếp
Hỏi đáp
19 Bài tập
25
00:41:57 Bài 3: Tính thể tích bằng cách gián tiếp
Hỏi đáp
12 Bài tập
27
00:41:18 Bài 5: Ôn tập, nâng cao
Hỏi đáp
28

Chuyên đề 4: Khối tròn xoay

 Giáo viên: TS.Phạm Sỹ Nam
29
00:20:04 Bài 1: Mặt nón - hình nón - khối nón
Hỏi đáp
10 Bài tập
30
00:31:25 Bài 2: Thể tích khối nón
Hỏi đáp
10 Bài tập
33
00:16:58 Bài 5: Thể tích khối trụ
Hỏi đáp
10 Bài tập
35
00:58:51 Bài 7: Mặt cầu - hình cầu
Hỏi đáp
10 Bài tập
36
00:21:56 Bài 8: Thể tích khối cầu
Hỏi đáp
10 Bài tập
37
00:15:37 Bài 9: Diện tích mặt cầu
Hỏi đáp
10 Bài tập
38
00:32:41 Bài 10: Ôn tập, nâng cao
Hỏi đáp
39
Đề thi online chuyên đề Khối tròn xoay
0 Hỏi đáp
60 phút
20 Câu hỏi
40
00:27:49 Bài 1: Tọa độ của vectơ trong không gian
Hỏi đáp
5 Bài tập
41
00:40:44 Bài 2: Tọa độ của điểm trong không gian
Hỏi đáp
5 Bài tập
46
47
49
52
00:19:42 Bài 12: Bài toán góc giữa các mặt phẳng
Hỏi đáp
6 Bài tập
54
Kiểm tra: Đề thi online phần Mặt phẳng
0 Hỏi đáp
45 phút
20 Câu hỏi
58
00:14:57 Bài 17: Góc giữa hai đường thẳng
Hỏi đáp
5 Bài tập
59
61
Kiểm tra: Đề thi online phần Đường thẳng
0 Hỏi đáp
45 phút
20 Câu hỏi
62
00:19:21 Bài 20: Bài toán viết phương trình mặt cầu
Hỏi đáp
6 Bài tập
66
Kiểm tra: Đề thi online phần Mặt cầu
0 Hỏi đáp
45 phút
20 Câu hỏi
67
00:37:14 Bài 24: Ôn tập, nâng cao
Hỏi đáp

Chuyên đề 9: Số phức

 Giáo viên: TS.Phạm Sỹ Nam
108
109
110
00:25:32 Bài 3: Giải phương trình
Hỏi đáp
111
00:21:41 Bài 4: Ôn tập, nâng cao
Hỏi đáp
112
Kiểm tra: Đề thi online chuyên đề Số phức
0 Hỏi đáp
45 phút
20 Câu hỏi